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A unified perspective is given on a number of different problems involving the
coupling of a localized quantum spin degree of freedom to the low energy exci-
tations of an antiferromagnet, a spin glass, or a Kondo insulator. The problems
are related to those in the class often referred to as ‘‘Bose Kondo.’’
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1. INTRODUCTION

The Kondo problem has played a central role in the development of the
theory of correlated electron systems. At its simplest it consists of a single
quantum spin, Ŝa (a=x, y, z), interacting with the fermionic excitations in
a metallic environment. In a modern perspective, many aspects of the
Kondo problem can be understood in the framework of boundary con-
formal field theory: the fermionic excitations in the environment are repre-
sented by a 1+1 dimensional, free, conformal field theory with central
charge c=1, and this interacts with the quantum spin degree of freedom
located at spatial co-ordinate x=0.
More recently, attention has focused on a new type quantum impurity

problem. Here, we again consider a quantum spin Ŝa, but it now interacts
with bosonic excitations in the environment. Such models become appro-
priate when the environment is in the vicinity of a magnetic ordering tran-
sition, and there are low energy spin excitations in the bulk; the latter may
be viewed as excitonic particle-hole bound states of a metal/insulator/
superconductor which peel off below the continuum of a pair of fermionic
particles or holes.



We begin by describing the simplest ‘‘Bose Kondo’’ problem, and
postpone a discussion of specific physical motivations till later, when we
consider more realistic models. The simplest model (1) has the Hamiltonian

H1=−lfaŜa (1)

where l is a coupling constant, and the Ŝa obey the usual relations of a
Heisenberg spin with angular momentum S,

[Ŝa, Ŝb]=iEabcŜc; ŜaŜa=S(S+1). (2)

The Bose field fa has Gaussian correlations in the absence of its coupling
to Ŝa, with the two-point correlation obeying

Ofa(y) fa(0)Pl=0 ’
1
|y|m
, (3)

for large |y| with m > 0, where y is imaginary time.
It is important to distinguish the above Bose Kondo problem, from

the ‘‘spin boson’’ problem which had been the focus of much earlier atten-
tion. (2) The latter deals with a two-level system coupled to a bath of har-
monic oscillators. Upon interpreting the two-level system as a spin, the
splitting between the energy levels behaves like a magnetic field on the spin.
In this situation, the spin-inversion symmetry, Ŝa Q −Ŝa for any 2 of the 3
a values, is explicitly broken by the Hamiltonian. In contrast, in the Bose
Kondo problem of interest here, this spin inversion symmetry is preserved
(when combined with the transformation fa Q −fa).
Despite the simple form of the Hamiltonian H1 and of the correlator

(3), the spin commutation relations (2) make this a problem of some com-
plexity which cannot be solved exactly. This is also evident from its path
integral formulation, in which we integrate over fa(y) and over a unit
length field na(y), where Ŝa=Sna:

Z1=F Dfa(y) Dna(y) d(n2a−1) exp(−Sb[fa]−Simp)

Simp=F dy 5iSAa(n)
dna(y)
dy
−lSfa(y) na(y)6

Sb[fa]=
1
2
F dy dy − fa(y) Q−1(y−y −) fa(y −).

(4)
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In this formulation, all the non-linearities are in the first Berry phase term,
which involves the vector potential of a unit Dirac monopole at the origin
of spin space obeying

Eabc
“Ac(n)
“nb

=na. (5)

Also, Q(y) is the two-point fa correlator at l=0, and (3) implies that its
Fourier transform, Q(iw), has the spectral density Im Q(w) ’ sgn(w) |w|m−1

at small frequencies.
The problem (4) appeared in ref. 1 in the context of a mean-field

theory of a quantum Heisenberg spin glass. It was solved here by
generalizing the SU(2) symmetry to SU(N), and taking the large N limit. In
this limit, the spin correlations obey

OŜa(y) Ŝa(0)P ’
1
|y|2−m

(6)

for large y and 0 < m < 2, while for m \ 2 and small l there is a broken spin
rotation symmetry (3) and the Ŝa two-point correlator reaches a non-zero
value at large |y|. The exponent in (6) was also obtained using a one-loop
renormalization group analysis, (3, 4) and was subsequently shown (5, 6) to
hold to all orders in an expansion in 2−m. The result (6) has also been
found to hold in certain quantum impurity models in which the spin Ŝa is
coupled simultaneously to bosonic and fermionic excitations in its
environment, (3, 4, 7, 8) including cases with spin anisotropy.
It is important to note that (6) relies crucially on the presence of the

Berry phase in (4). In the absence of this term, we can integrate over the
Gaussian fa modes, and then (4) becomes equivalent to a classical ferro-
magnetic spin chain at finite ‘‘temperature,’’ with exchange interactions
which decay as 1/|y|m. The properties of this classical model (9) are very dif-
ferent and have an interesting ‘‘dual’’ structure. Now, the ferromagnetic
phase with broken spin rotation symmetry appears only for m < 2 and low
‘‘temperatures’’ (large l)—in contrast, with the Berry phase term, as we
noted above, spin rotation invariance was broken for m \ 2 and small l.
Furthermore, in the classical model without the Berry phase, the para-
magnetic phase with preserved spin rotation symmetry (present for all
‘‘temperatures’’ for m \ 2 and in the high ‘‘temperature’’ (small l) phase for
m < 2) has its two-point Ŝa correlator decaying as 1/|y|m—in contrast, with
the Berry phase we found a rotationally invariant phase for m < 2 and with
the correlator (6).
Intriguing and interesting as the properties of Z1 are, their physical

interpretation and application require care and must be discussed in the
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context of the underlying model from which Z1 was derived. In particular,
a free Bose field with a gapless spectrum is a delicate object which can
become unstable under infinitesimal perturbations (this should be con-
trasted from a free Fermi field, which has a robust stability). One instance
of this instability is the response to an applied magnetic field, Ha; there
must be a coupling which imposes a precession of fa about the direction of
magnetic field, and in these conditions the action is unstable to arbitrarily
large fluctuations in fa in the directions orthogonal to the field. For the
initial spin glass context in which Z1 was studied, the ‘‘quantum critical’’
state described by (6) was found to be unstable to the onset of spin glass
order at low temperatures. (6)

In the remainder of this paper we will review another context in which
Z1 has appeared: the theory of quantum impurities in insulators and
superconductors with low energy quantum spin fluctuations. Here, as we
will see below, it is essential to include a quartic f4a term for proper com-
putations of the Ŝa correlations.

2. QUANTUM ANTIFERROMAGNETS: f4 FIELD THEORY

A concrete application of the ‘‘Bose Kondo’’ theory, which is now
reasonably well understood, is the problem of quantum impurities in two-
dimensional antiferromagnets. For definiteness, consider the simple
coupled ladder antiferromagnet, illustrated in Fig. 1. As the ratio of the
exchange constants is varied, two distinct types of ground states are
obtained. For weakly-coupled ladders, the ground state is a spin singlet
and there is a gap to all excitations; the ground state is adiabatically con-
nected to the state in which each spin is paired in a singlet with its partner
across the rung of the ladder. In contrast, when the inter- and intra-ladder
exchange constants are roughly equal, the model has the structure of the
square lattice antiferromagnet, and so has antiferromagnetic Néel order in
its ground state; in this case spin rotation symmetry is broken, and the spin
operators have an average expectation value which has opposite signs on
the two sublattices. Given the distinct nature of these two ground states,
there must be a quantum phase transition between them. There is now
quite convincing evidence (10) that there is one second-order quantum criti-
cal point, and in its vicinity the spin fluctuations are described by the f4

field theory, written here in d spatial dimensions:

S̃b[fa]=F ddx dy 51
2
{(“yfa)2+c2(Nxfa)2+rf

2
a}+

u
24
(f2a)

26 . (7)
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Fig. 1. The coupled ladder Hamiltonian. Quantum spins resides on the filled circles. They
are coupled by two different antiferromagnetic exchange constants, indicated by the full and
dashed lines.

The field fa represents the staggered Néel order parameter, and the tuning
parameter r moves the system from the spin gap state at large r, to the Néel
state at smaller r. The spin-wave velocity is c, and u is the quartic non-
linear coupling.
Now insert an arbitrary quantum impurity in the spin ladder system:

two examples are shown in Fig. 2. In the spin gap state, the presence of
such a impurity may liberate one or more spins from their partners, and
this leads to a residual Curie spin susceptibility at a low temperature T:

qimp=
S(S+1)
3kBT

; spin gap in bulk antiferromagnet. (8)

Here S is an integer or half-odd-integer which characterizes the impurity. A
remarkable property (5) of the low energy dynamics of the quantum

(a) (b)

Fig. 2. Two examples of quantum impurities in the coupled ladder antiferromagnet,
assumed to have spins with angular momentum S − on the filled circles. (a) A vacancy, which is
characterized by S=S − in (8). (b) A defect bond: the double line represents a large ferromag-
netic exchange, and this is characterized by S=2S − in (8).
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impurity is that no other parameters are needed to described the spin
dynamics in its vicinity, provided the bulk antiferromagnet is not too far
from its quantum critical point. This result emerges from an analysis of the
theory coupling the impurity to the f4 field theory:

Z2=F Dfa(x, y) Dna(y) d(n2a−1) exp(−S̃b[fa]−S̃imp)

S̃imp=F dy 5iSAa(n)
dna(y)
dy
−lSfa(x=0, y) na(y)6 ,

(9)

with S̃b[fa] given in (7). Notice the similarity of Z2 to Z1: at r=0, u=0,
we can integrate out all the fa(x ] 0, y), and then Z2 reduces to Z1 with
m=d−1. However, it is crucial in the proper theory of Z2 that the non-
linearity u be treated at an equal footing with l; there is a non-trivial ‘‘in-
terference’’ between u and l, and the interaction u significantly modifies the
magnetic environment coupling to the impurity. It is not permissible to
treat the environment as a Gaussian quantum noise, and focus only on its
Kondo-like coupling to the impurity.
A systematic renormalization group based analysis of Z2 was carried

out (5) in an expansion in (3−d). The couplings l2 and u both approach
fixed point values of order (3−d), and this is the reason the coupling
between the bulk and impurity spin fluctuations becomes universal, as
claimed above. At the critical point, the spin correlations decay as

OŜa(x, y) Ŝa(x, 0)P ’
1
|y|g

Œ ; x % 0, (10)

close to the impurity. The exponent g − ] 2−m=3−d, as would be implied
by (6), because of the non-zero fixed point value of u. Well away from the
impurity, the results are as in the absence of the impurity with

OŜa(x, y) Ŝa(x, 0)P ’
1

|y|d−1+g
; xQ., (11)

where g is the well-known anomalous dimensions of the f4 field theory in
d+1 spacetime dimensions. The value of g −, and numerous other physical
properties of the impurity on both sides of the bulk quantum critical point,
were computed in ref. 5 to second order in an expansion in (3−d).
Numerical studies (12, 13) have investigated some of these properties. Related
theoretical results were obtained recently (11) in magnetically ordered states
in the presence of spin anisotropy.
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3. QUANTUM ANTIFERROMAGNETS: NON-LINEAR SIGMA MODEL

An alternative approach to the impurity dynamics discussed in Sec-
tion 2 is provided by a different representation of the bulk spin fluctua-
tions. It is well known that in low dimensions the f4 field theory can be
represented by the non-linear sigma model: the fluctuations of the ampli-
tude, f2a, become irrelevant, and we need only focus on the angular fluc-
tuations of the Néel order parameter. These are represented by a unit-
length field Na(x, y). Such a ‘‘non-linear sigma model’’ representation
provides an expansion in powers of (d−1) for the bulk critical properties.
In the quantum impurity problems of interest here, such a fixed-length

representation offers some benefits. One is that it allows systematic com-
putation of some properties in the ‘‘renormalized classical’’ regime directly
in spatial dimension d=2. However, more importantly, in the fixed-length
formulation the universal nature of the couplings between the bulk and
impurity spin fluctuations can be accounted for at the outset. Indeed, it was
argued (14) that in the scaling limit of the fixed-length theory, the quantum
impurity behaves as if it is in the lQ. limit, and hence the impurity spin
orientation align along the direction of the bulk spin order; in other words,
we have na(y)=Na(x=0, y). With these arguments, we can rewrite the
model described by the partition functionZ2 as

Z3=F DNa(x, y) d(N2a−1) exp(−Sb[Na]−S̄imp)

S̄imp=F dy 5iSAa(n)
dna(y)
dy
6 with na(y)=Na(x=0, y)

Sb[Na]=
1
2cg

F ddx dy[(“yNa)2+c2(NxNa)2],

(12)

where now g is the coupling constant that tunes the bulk antiferromagnet
across the quantum critical point. Notice that there is no other coupling
constant, and hence the universal nature of the coupling between the bulk
and impurity is explicit. A systematic (d−1) expansion of Z3 was per-
formed, (14) and all results were found to be consistent with those reviewed
in Section 2. In particular, a (d−1) expansion was presented for the expo-
nent g − in (10), associated with computation of a ‘‘boundary’’ renormaliza-
tion constant for the field Na(x=0, y). Related results were also obtained
in ref. 15.
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4. ELECTRON SPECTRAL FUNCTION IN KONDO INSULATORS

Kondo insulators are another class of physically interesting systems
displaying a magnetic transition. In Kondo lattice models with a commen-
surate density of conduction electrons, increasing the Kondo exchange can
drive the ground state from an ordered Néel state to a paramagnetic
insulator in which the conduction electrons and local moments are strongly
hybridized. The low energy magnetic fluctuations near such a critical point
are also believed to be described by the f4 field theory (7).
Now, let us consider the photoemission spectrum of a conduction

electron in such an insulator in the vicinity of the magnetic transition. (16)

Away from the critical point, there will be a sharp quasiparticle/hole pole
with a finite residue, and the position of this pole will disperse in the
Brillouin zone. Focus on the spectral function at the minimum of this
dispersion, (17, 18) where the momentum dependence is quadratic. It was
argued (18) that near this minimum, and in the vicinity of the magnetic
ordering transition where the action (7) applies, we can safely neglect the
quadratic dispersion of the hole. We are therefore left with the problem of
a static hole interacting with the magnetic environment described by (7).
This problem is clearly analogous to the X-ray edge problem, where a static
hole interacts with a Fermi liquid.
This ‘‘Bose X-ray edge’’ problem is described by the partition function

Z4=F Dfa(x, y) Dka(y) Dk†a(y) exp(−S̃b[fa]−Sk)

Sk=F dy 5k†a 1
“

“y
+e0 2 ka−

l

2
fa(x=0, y) k

†
as
a
abkb6 ,

(13)

with S̃b[fa] given in (7). The ka are Grassman variables representing the
hole with a, b= ‘ , a , and sa are the Pauli matrices. A complication has
been ignored in our presentation here of Z4 here: as the field fa carrier spin
fluctuations at a finite momentum, it actually couples fermionic excitations
at two different points in the Brillouin zone. We have not included this
effect here because keeping track of the fermionic momentum label does
not modify the critical properties. (18)

With the hole present, the quantum theory Z4 is, in fact, identical to
Z2 (with S=1/2): we have simply realized the quantum spin by a single
hole. Consequently, the renormalization group equations for the l coupling
in (13) are identical for those for l in (9). However, the present formulation
allows determination of a new renormalization constant associated with the
insertion of a hole. This constant measures the overlap of the system
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wavefunctions with and without the hole; in contrast, in (9) the spin is
always present and so this physics is inaccessible.
Specifically, in the paramagnetic phase, away from the critical point,

the single hole Green’s function G, has a quasiparticle pole given by

G(w)=
Z
w− e0

(14)

where Z is the quasiparticle residue, and e0 has absorbed a renormalization
from the coupling of the hole to fa. As we approach the critical point, there
is an orthogonality catastrophe and ZQ 0. Instead, at the critical point we
have (17–19)

G(w) ’
1

(w− e0)1−gf
. (15)

The exponent gf is distinct from g −, and its determination requires a sepa-
rate renormalization group analysis. The value of gf has been obtained in a
two-loop expansion (19) in powers of (3−d), and by a numerical simula-
tion. (18)
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